AUTHOR TITLE	Lay, Margaret
	The Effect of Supplementary Sinall Group Experience
	on Task Orientation and Cognitive Performance in
	Kindergarten Children. A Final Report of the
	Kindergarten 'Learning to Learn' Program Evaluation
	Project.
INSTITUTION	Syracuse Univ., N.y. Syracuse Center for Research and Development in Early Childhood Education.
SPONS A GENCY	Office of Economic Opportunity, Washington, D.C.
REPORT NO	OEO-4120
PUB DATE	69
NOTE	71p.
EDRS PRICE	EDRS Price MF- \$0.50 HC Not Available from EDRS.
DESCRIPTORS	Activity Learning, Behavioral Objectives,
	*Kindergarten, *Preschool Curriculum, *Program
	Effectiveness, *Program Evaluation, Sequential
	Learning, Sequential Programs, Small Group
	Instruction

ABSTRACT
A study was done to see if a teacher-guided, sequentially-arranged program of instruction for kindergarten children used in addition to a regular classroom program is more effective in producing general intellectual gains and specified behavioral characteristics than two instructional alternatives. These alternatives were (1) participation in a regular kindergarten program or (2) participation in a special program of expressive activities (such as finger painting, block play) in addition to a regular kindergarten program. Subjects were 104 disadvantaged kindergarten children. Each instructional group had approximately 30 hours of actual contact time. The Stanford-Binet and the Peabody Picture Vocabulary Test (PPVF), were used to measure intellectual functioning, and experimental task situations were used to obtain measures of attention, visual retention, visual discrimination, task persistence, divergent uses, and classification. Results did not support theories on the advantages of sequential instruction or a special program of expressive activities in addition to the regular classroom program. Appendixes describe the programs and give test data for subjects. [Not available in hard copy due to marginal legibility of original document] (DR)

OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PEASON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES. SARILY REPRESENT OFFICIAL OFFICE OF EDU. CATION POSITION OR POLICY.

The Effect of Supplementary Small Group ixperience on Task Irientation and Cognitive Parformance in rinderêarter Children
-argaret Lay

7969

The researci rejorted serein was conducted pursuant to a contract with the office of sconoraic Opportuniry, Contract io. Ox0-4120 and tie Lvaluation and kisearch Center, Project Lead Start, B̈yracuse Ur:iversity, William J. Zeyer, Director.

The Iffect of Gupplementary 5mall rroun Pxperience on Task Orientation and Cognitive ?orformance in Pinderoarten Children

A Final nenort of the :inderparten
'Learning tn Learn Program Fvaluation Proiect
Marcaret Lay, School of Education Syracuse University

Introduction and Bachoround

A major controversy in the early childhood field has been waged over the issue of whether optimal develomment occurs when a child is allowed to spontaneously interact with a orenared environment or whether nre planned sequences of learning activitios are mreferable. Several recent studies (Blank, 1968 Day, 1058 : DiLorenzo. 19AR, Clasen Spear and Tomaro, 1960) seem to support the vien that . at least for very specific poals carefullv structured preolanned sequencens are most effective. At least one study (Eemrow: 1968) and the oninions of. many child develoment spectalists hold that children's capacities for selfadirection and/or creative abilities may not be fostered in the more hiohly'structured and sequenced programs. Comparisons between sequentially-arranged teacher-guided orograms and those primarily focusing on children's self-initiated activites are needed to provide further evidence. The general purnose of this study was to compare the effects of these altrrnative learning situations.

More specifically, the study was designed to evaluate the effectiveness. of the sequential instruction component develoded by Dr. Herbert Snrigle as part of his Learnine to Learn model for sarly childhood education. Evaluations conducted by van ds Riet and Van depiet (1966, 1967) of the Sprifle program established it as a promising anproach worthy of further evaluation. In an initial study (Van de Riet and Van de Riet, 1n66) three matched grouns of "culturally deprived Neorn children were compared. An entire class sroup of 25 received the exnerimental proprom utilizing two classroom areas - a work-nlay area in which the total classroom group engaged in a variety of activitics and a smaller room used for work with orouns of four or five children in a sequential nrorram of guided learning

The children were taken from the reqular chassrom for andy ahnt neriods of partictpation in cames are activites desimed to oat the cht!d to become active in the learnine orocess.' A second rroun recoived kindergarten traininp in an established traditjonal" kindergarten in the community and a third groun had no formal trainin g. Children in the exnerimental program were found to be sionificantly superior to Ether the traditional kindergarten group or the no kindergarten froup on cevelonmental measures includinf Stanford-Binct Luman Firure Drawines Penbody Picture Vocabulary Test Render Gestalt test Metronolitan Readiness Test Visual encoding, Yerbal encoding, Auditory-voc: 1 assocjation, Visual-motor association subtest of the Jllinois Test of Psycholinguistic Abilities. The traditional" trained group showed higher nerformance than the no-kinderoarten grnup but the differences were not nearly as oreat as between the exnerimental and traditional" groups.

The sprisle prorram was alsc experimentally used and evaluated for lower-midale class children. The results of hoth studies (reproduced from Sorisle, et.al., 1067) are presented in Table 1. It will be noted that the experimental program resulted in sreater improvement for culturally-deprived children than for the lower-middle class children. at the termination of 3 nine-month program the culturally-deprived experimental children were functioning at levels similar to those of the lower-middle class children exposed to traditional kindergarten proorams.

Althourh the Learnins to Learn program in toto has been demonstrated to make an immressive difference in children's develoment ebpecially culturally-deprived children, there remain unanswered many questions as to the factors most contributory to these rains. The highly-structured sequential tasks used in the experimental program were assumed to be the mator contributing factors. Van de Piet and van de Riet (1966). hovevers, also noted the high level of investnent and teaching comnetence of the author/director of the exnerimental program. The issue of teacher finvolvement must be accounted for by further evidence.

A third nossibility also seems to warrant investigation. The evaluators did not determine to what degree the nrogram of general classroon activities (beyond the special gmes and activities used as nart of the guided-learning seguences) were different from those of the traditional classroom. Ohservars this writer. reported a richness of materinis and opportunities for unstructured interaction and exnlnration quite distinctive from most traditional" oottinos. Since all children in the experimental

TABLE 1
COMPARISOMS OT CULTURALLE DISADVAPTAORT AM LOTER-UIPDLE CLASS CHILDREN AT THE COMPLETION OF KIMMERGARTEN

Variables		Lne. to Ln. Mean	Trad. Proaram Mean	N Program 1!ean
Binet Intelligence	Disadv.	104.12	90.33	83.29
Scores	Lev: P价	112.83	107.33	
Binet Vocabulary	Dissadv.	5.62	3.71	2.71
	Low IC	7.00	6.15	
Bender-Gestalt (error score)	Disarv.	11.96	15.46	17.33
	Low MC	7.91	11.43	
Metronolitan Readiness-Total	Disadv.	66.46	44.71	40.79
	Low MC	66.78	47.38	
School Peadiress Screening Test	Disedv.	20.08	13.79	13.21
	Low : 1 C	24.65	22.24	
Sequin Form Board (time score)	Disadv.	23.46	31.46	33.08
	Lew MC	21.26	21.62	
Rail Galking (errox score)	Disadv.	10.92	31.83	28.21
	Low ?C	10.78	16.48	
Human Figure Drawings	Disactv.	16.33	10.04	7.08
	Lntw MC	20.09	14.52	

Note. Renroduced from the nublication A Fresh Anoroach to Farly Childhood Education and a Stuiy of Its Effectireness, a rencrt subpitted th the Carnepie Corporation of New Xork, by lerbert Spricle and Joan Snrigle, Directors and Develoners of the Program, and Vernon Van de Riet and Hani Van de Riet; Directors of the Evsluation Study. 1967.
program had similar exposure to the general classronom and tat special instructional sequences in small s,rouns the question arises as to whether the success of the prorrm could be attributed to richness of general classroom program rather than to the sequential learning exneriences ner se. The study described in this renort included desien conditions to allow separate analysis of these prosram features.

A fourth pessibility, ilthough less likely to account for developmental gains, is that simrily being taken from the classroon in small grours and receiving "extra attention" is a sipnificant exnerience in itself. Although Blank (1967) did not find gains on Stanford-pinet scores for two subjects in a small pilnt study who simply received individual attention outside the classroom, other such comnarisons have not been reoorted and the possibility cannint be dismisier. The present study provided a "placebo" situation to explore these effects.

OBJECTIVE OF THE STUMY

The objective of this study was to determine whether a teacherguided, sequentially-arrançed program of instruction for kinderrarten children used in addition to a regular classroom program is more effective in producing general intellectual gains and snecffied behavinral characteristics than two instructional alternatives. These alternatives were (1) particination in a requar kinderoarten program or (2)"narticipation in a special prograr of expressive activities in addition to a regular kinder. garten prorram. Assessment of subjects ${ }^{\circ}$ nerformance on standard developmental ineasures and in a range of selected discrete situations were obtained and used to determine differences between oroups assioned to the abovementioned alternative instructional situations.

Definitions

Sequential instruction - For the experimental teacher-çuided sequentially-arranged nrogram of instruction" children were taken from the regular classroom in oroups of four to seven to participate in a nrearranged sequence of activities under a teacher's direction. These sessions of annroximately twenty minutes duration were conducted in a senarate small room. These proups are hereafter referred to as Sequential proups, (For more complete descriptions of the sequential instruction series: see Appendix A.)

Expressive activities .. The nlacebo proeram of 'expressive activities' consisted of aoproximately twenty minutes of daily particfpation by children in groups of four to seven in activities such as easel paintinf, finger painting, puppet nlay, block nlay, experimentation with musical instruments:
clay work, cte. These sessinns were alsn conducter in the manil room anart from the reoular classrom since the functinn of the fxnressive activity was to provide a placebn situntion of similar duration persnnnel sroup size as the sequential instruction condition, the teachers were instructed to use the products of the chitrien's activities as a focus for conversation but to avoid directing those activities to mroduce snecific cosnitive attoinment. Most of the materials used in the Fxnressive procram were also available in the regular classronms. The Expressive situation was designed to neither substantially add to nor detract from the experfsce of the regular classroom propram while providing the same dimensions in regard to teacher-child ratio and nhysical setting as the sequential treatment. (For more complete descriptions of the sequential instructinn series, see Appendix B.)

NETHOD

Subjects
The subjects of this study were kindergarten chilitren enrciled in an inner city Syracuse public schnol. Chiliren from six kindergarten classes at Dr. Martin Luther King. Jr. Elementary School providch a pool of 116 subjects. All of these initial enrollees in each of the six kinderparten classas were randmly assioned to one of the instructional conditions. Twelve noved from the scheol district during the year leaving a total of 104.

Six subjects were white the remaining black. There were 56 girls and 48 boys. Apes ransed from 4 years, 9 months to 6 years. \leqslant months at the beginning of the study in September, 1968. All were enrolled in the kindergarten for the first time although three were over age the afe range for the ramainder of the oroun was from 4 years, 9 months to 5 years: ? months. Although no measure of socio-economic status was used, the ponulation would generally be described as low economically and "culturaily disadvantafed accordinf to the usual criteria. The mean intelligence, accordin? to Stanford-Binet scores nttained from 95 of the oriefnal proup was 86. Analysis of inicinl in testine indicated that thera were not significant dffferences between erouns according to classroom, session, or instructional condition.

Procedure

The manipulation of the prooram for exnerimental surposes consisted of providing additional experiences for some sub-grouns beyond the base classroom experience from the neriod bekirniraf nctober 7, 1982 thrrumh

May 30, 1969. There were three treatment conditions desirnated as Sequential, Expressive, and Control.

Sequential subjects were taken from the reoular classrom for approximately twenty minute daily periods (with the usual excentions of days when there were special all-school events, etc.) to articinate in a teacher-puided sequentially-arraneed instructional nrifram. Exnressive subjects were aiso taken from the reqular classronm for annroxinately twanty minute daily neriods but participated in various exnressive activities with a mindnum of teacher direction and no nreplanned use of matertals to effect particular cognitive attaiments $n x$ approaches to learning. Each of these instructional grouns had anmroximately one hundred sessions, cmprising thirty or more hours of actual contact time. Control subjects had only the regular classroom experience.

The sessions for the Sequential and Expressive groups were conducted by professionally-cualiffed half-time teachers not otherwise involved in the regular classroom proṣrams. Each of these teachers was resnonsible for Sequential Instructional Prograns for annoximatoly 20 chilcren, five to seven from each of the three classrom ornuns during aither the morning or the afternoon session and similarly fnr the Exoressive Activities for approximately 20 children. The seouential children for which each of these teachers was responsible were regrouned across class lines to more closely approximate desirable homooeneous instructional levels but only four to seven chillren were in session at any one time. Similar regrounings of Expressive subjects vere also affected to maintain similarity of treatment.

Table 2 presents the subject distribution for both the oripinal groun and the groups after attrition.

As noted mreviously one of the half-time teachers was assioned to the morning session, the other the afternoon. They were responsible, therefore, for working tith both the Sequential and Expressive instructional conditions. The rationale behind this strategy was, of course, that the likelihond of teacher differences affecting results would be lessened if the same individuals were involved with the two treatment conditions. There existed the possibility that the teachers mipht favor nne of the anproaches over the other and that these attitudes might influence teaching behavior. Concerted efforts were mate to emphasize to the special teachers, however, that it was expected that siefnificant contributions to children's development would accrue from both of the snecial rrograms. It was stressed throushout the study that both apnroaches were exnected to make positive, 1lthough perhans different, cortributions:

To sumarize, the design of the study enabled combarison of grouns of kindergarten children who had experienced either a regular school program plus sequential instruction, a repular school program plus expressive activities program, or only the repular school orogram. These have been desirnated as the Sequential, Expressive, and Control instructional conditions. The three separate base classrooms can also be compared as well as differences between morning and afternoon sessions. The latter condition includes the primary influence of a different special teacher for each but also obviously includes time difference and class composition. The main and/or interaction effects of Instructional Condition, Classroom, and Session were examined through analysis of variance techniques.

Evaluation Instruments

The Stanford-Binet Intelligence Scale and the Peabody Picture Vocabulary Test were the standard measures employed in this study to obtain a qeneral assessment of intellectual functioning. Non-standard experimental task situations were used to obtain measures of attention, visual retention, visual discrimination, task persistance, divergent uses, classification. These are described in the followino sections.

Attention, Visual Retention, Visual Discrimination. Three separate scores for each subject - attenticn, visual retention: and visual discrimination - were deriver from the use of a task situation in which the subject examined a two-dimensional form displayed at the bettom of a small box and subsequently selected an identical arrangement from an array of choice forms.

Twelve boxes were constructed from poster board in $1^{\prime} \times 1^{\prime \prime} \times 1^{\text {s }}$ dimensions (without tops). Stimulus forms randmly selected from the Thurstone Identical Forms Test were Dested at the bottoms of the koxes. For each of the twelve boxes the matching array of choice forms from the Thurstone tests were centered on $3^{\prime} \times 5^{\circ}$ sheets of black construction paper.

The examiner showed the first small box to the subict and said, "We are going to play a pame with some boxes. There is a little picture in this box. Take a look at the oicture. You can take the box in your hands if you like. You can look at the picture for as long as you wish." When the child stopped lonking the examiner removed the box to her own hand out of the child's visual access and immediately presented the choice card. Now take a look at these. Dn you know which of these is just the same as the one in the box? Which one lonks just like the one in the box?"

When the child indicated one of the forms, the original box was redisplayed and the examiner said, "Were you rioht? Is that just the same as the one in the box?" If the child responded that his initial choice hat

TAPLE?

SURJECT DISTPIBUTION BFTWEEN CLASSRODM, GESSION: APD INSTRUCTIONAL CONDITION

Classrom \& Session		Instructionel Condition		
		Sequential	Fxnressive	Control
Classrom A	As!	7-6	7-7	6.4
	PM	6-5	7-7	$6 \cdot 6$
Classromm B	AN	6.6	7-7	7-7
	PM	$f_{1} \cdot 5$	6-5	6-6
Classroom C	MM	6-6	$6 \cdots 6$	$6-6$
	PM	7-6	$7 \cdot 6$	7 . 5

Wote. The first number indicates the orioinal W for each of the conditions the second number indicates the N after attrition.
not been correct, the examiner saic, thich one is exactly the same as the one in the box?"

For the first two of the twelve boxes. incorrect responses were discussed and the child was shown the matching form, if necessary, and told why it was correct and the others wrong. No record was made of the child's performance for the first two trials. For the remaining ten boxes the child's xesponse was accented without correction even though in error.

From this series of interchanges between examiner and subject an observer seated rearby (within threa feet of 3) recorded three scores for each of the ten box presentations. Firsic, a record was made of the length of tine the child actually spent looking (eyes directed toward) at the box. The ten time measures were later averaged to obtain one score described for the purposes of this study as an attention senre. Second, the choice the child made when the stimulus form was out of sight was recorded as a visual retention wieasure. The total number of correct responses comprised the visual retention score. Third. the child's choice when the stimulus form was arain in view was also recorded for each of the ten boxes and the total number of correct responses comprised the visual discrimination score.

Task Persistance. A felt-covered board was placed on the surface of a table at which subjects were seated. Six $4^{*} \times 6^{*}$ felt rectangles of varying colors were prepared, as follows' one was used in the original whole state, a second was cut into two $4^{\prime} \times 3^{\prime \prime}$ pieces, a third was cut diagonally into two pieces, a fourth was cut diaronally with one of the sections again cut diagonally to form three triangular pieces, a fifth cut into eicht irregularly shaped sections, and a sixth cut into two 2×6^{6} pieces.

The whole rectangle was held out by the E and biaced on the felt board directly in front of the child. The two $4^{\circ} \times 3^{\prime \prime}$ nieces were then presented and the E said, "TVe are soing to play a game with shanes. We are going to try to put these pieces together on ton of this shane so that they are fust the same as this one. I would like you to try to put these nieces on top of this shape so that it is all covered. If necessary, the E demonstrated how the pieces could be placed on ton of the original rectangle and then removed them again inviting the child to try it. Each of the partitioned rectangles were then presented to the child in turn and a record was made of the child's nersistance in pottemitinn to solve the nuzzle of how to assemble the pieces. Tf the child stopped working or verbally indicated that he didn't wish to continue, the E completed the rectangle, removed the pieces and presented the next puzzle. If he nersisted for four minutes in trying to solve a puzzie, the E said, "You worked very hard on that one,
didn't you? Let me help." The E would then complete the puzzle and nresent the last one.
(Note: Initially the fifth nuzzle had keen conscructed to be unsolvable. The examiners, however, found it so disconcerting to watch a child work at a puzzl.e that they knew had no solution that they were allowed to substitute the possible, although extremely difficult. eioht-sectinned rectangle. Since it proved quite difficult for a serjes of adults and was not solved by any of the children in pilot work, it was therefnre used with the sample children. Much to the consternation of the Es: however, 2 few children in the study did solve this puzzle. This will be further discussed in the Reaults section.)

Divergent Uses. The equipment included a $3^{\prime \prime}$ tan Steiff teddy bear and a large supply of blue paper party cups ($1^{\prime \prime}$ in diameter and $3 / 4^{\prime \prime}$ doep).

The examiner placed the teddy bear on the table in front of the child and said, "Would you like to play with this little teddy bear? Go ahead - you can play with it. Here is a paner cup to biay with also. What can you think of to do with the bear and the cun?: After a one minute period the E said, "You did a let of thines with the bear and the cup:' Let me take that cup now and I'11 give you a new cup. Can you think of something else to do with this cup that you haven't done before?: Then the child manuevered the cus and/or the bear in some way the E said, "What is the bear doing with the cup?" or "Tell me what is happening." Upon receiving a reply or after a brief pause the E said, "Now, let me take that cup and give you another one. Can you think of something different to do with this cup that you haven't tried before?:"

As each cun was removed it was placed with the other used ones in a row at the back of the table. If a child reneated the same action and/or description, th? E said, "I think you did that before. Can you think of something different to do?" If the child then indicated no or did not respond, the E took the cup and presented a new ne as if an additional action had been performed. The cups were presented continuously to the child as rapidly as his resnonses allowed durine the three minute period.

An observer seated within three feet of the child recorded the actions and significant words of the child during the one minute and three minute periods. Actions such as the following were listed on a duplicated sheet and required only a check - sits on cun, sits in cup, sfits beside cup (cup up), sits beside cup (cup dorm), sits with back to cup, puts cup on head, etc. Other actions and verbal descriptinn were recorded in writins by
the observer. Although most actions during the first minute perind were motor manipulations ane during the secnnd three minute period included verbal descriptions this was not always the case and indications were made in the record when there were exceptions.

Two scores were derived for ench child from the record sheets. First a count was made of the total number of different actions the child producer? with the bear and the cun $=$ including both these that vere motor maninulation only, and those which were verbal description as well as motor nanipulation. This tot:al was termed Divergent Uses-Total.

A second score was deriver from the numerical weiphting of each response according to a scaline of items. In a pilot study involvine twenty subjects it was found that responses could be justifiably scaled according to the following criteria. Level 1 responses - Rear is placed in varying positions in relation to the cun, i.e. nuts Bear's feet in cur. places cun on Bear's paw: S gives Bear a motor experience with cun, i.e., has Bear walk or jump over cun Bear uses cup as a usual fond container, i.e., eats out of it," "drinks milk." Level 2 responses .- Cun is used as a common container other than a food container, i.e. bath tub, bed; sinik, toilet, chair, bucket- Cup is used as a more unusual container, i.e., "fry some chicken in it.: "cook a snake," 'ret in it and splesh some water,: "dic̣ up snow and put it in it." Level 3 responses - Cup is used as an unusual non-fnod container or as a non-container object, i.e., nool, garbage can, bnat. car, cabinet, door, TV, stop sign.

In the scoring process each item was assigned to a leval and assinned a corresponding 1, 2 or 3 value. These values were summed for all items to comprise a Divergent Uses-Weighted score. Correlations between Divergent-Uses-Tyeighted scores assigned by two independent raters from the nrotocols of twenty randcnily selected subjects was deternined to be 97 .

Classification. The classification tasks used for this study were adapted from those described by Charleswnrth (1968). In the oresent study, the subject was oresented with an arrey of 21 objects arranged on a low table. After a brief nerior! (annoximately 30 seconds) he was shown an additional stimulus obfect which was olaced in a shallow box on a chair at his side. The subject was asked to pick out all the thines that "op with • helong with," or "are like": the object. He was allowed to chnose as many objects 83 he wished to place in the box with the stimulus object. If he stopped prinr to choosing, four, however, the tester asted. "Is there
anything else that would os with the - - - ? ${ }^{*}$
The E recorded each choice (through the first five) in order and any spontaneous comments the child made which seemed relevant to the reason for his choice.

After the series of selections had been made the chosen objects were returned to the array and the tester presented the child with a new stimulus object, again asking him to pick out all the things that "go with the object. Five separate presentations were made and the choices recorded for each of the following stimulus objects - red crayons, orange fruit, yellow cone-shaped party kat, man, yellow and green milk carton. In a final sixth request the E said, "This time I 'm not ooing to show you anything ait all. I'm just ooing to say a word. Food. Pick out all the things you think go with food."

The objects in the array were an orange nen, a cone-shaped noncorn container, orange fruit, red apple, ice crean cone, banana, toy baby bottle, toy red fireman's hat, reddish-orange ball, red candle. yellow pencil, red crayon, yellow and green model of an afartment building (aylindrical), toy beige cowboy hat, orange-covered matches, preen and white-covered matches; crac, e toy umbrella, miniature rubber cow, miniature rubber boy, girl and woman.

Rating of the classification responses was completed subsequent te the testing periods from the record sheets. Twn ratings were made according to the extent to which logical thinking was used in making choices. One rating was made of overall use of organizational frinciples a second was made of consistencies of choice patterns. The following definitions were followed in making these evaluations: Organizational principles - If all of the selections chosen were seen to be the product of logical reasoning, 2 points were assigned. Different nrinciples might be included in the same grouping however, i.e., with red crayons there might be red objects; objects that write, long thin objects, etc. If the grouping hat at east pme of the choices which appeared to result from logical reasoning, 1 point was assigned. Choice patterns - If all objects in a grouping were seen to fit one principle, 3 points were assigned. If all objects in a grouping were seen to fit some logical principle in relation to another object in that groupfing. (although perhaps not in regard to the stimulus obiect: i.e.: for red crayon - red apple, red candle, green matches) 2 points were awarded. If at least one choice was seen as related to the stimulus object although other choices were related to neither stimulus cibject or previous choices

1 point was awarded.
Two scores were thus obtained for the classification task. One was for Classification-Organizational Principles' the second for Classification-Choice Patterns. The hishest nossible score for the first was 12 for the second, 18.

Reliability comparisons were made between scores assigned by indenendent raters for twenty randomly selected records. The nercentage of agreement for each of the six presentations according to organizational princinle were crayon, 100%; orange, 100% : party hat, 95 : man. 100% carton, 90%. food, 95%. The choice pattern ratings were in agreenent, as follows crayon, 95\%; orange, 100% : party hat, 100\%; man, 95\%: carton, 80% food, 95%.

Testing Schedules, Personne1, and Procedures

Pre-testing on the Stanford-Binet took place from Saptember 14 to October 5; 1968 prior to the initiation of the program. Scores for some subjects were available from testing done during the previous sumer from a study conducted with Head Start participants. In cases where multiple scores hat been obtained from these subjects the most recent was user.

All post-testing was accomplished between May 15 and June 17. This included the Stanford-Binet, Peabody Picture Vocabulary Tests and the six non-standard measures. The administration of the Stanford-Binets, both pre and post-testings was done by qualified non-project nersonnel from Syracuse University. These examiners had no or very little knowleige of the nature of the study and no knowledge of the treatment assifnments of subjects. They had so particular schedule for testing and followed their own inclinations for order of taking children from clasrooms. None systematically took children from the same classrooms throughout their testing periods.

The bulk of the remainder of the testing was done by the two half-time teachers who had worked throughout the program and, hence, were very famillar with the conditions of instruction used in the study. They, however, did testing during the opposite session than the one during which they had been teaching and so had almost no knowledpe of those children or the groups to which they had been assigned. The few children who were known were identified prior to the testing and they were therefore examined by an additional outside person who worked on a short term basis testing those children and a group of other chiliren. The testing was thus conducted on a "blind" basis.

Since rather extensive testing, had to be accmplished in relatively brief periods of time there were some instances for each kind of testing in which children were absent or inadvertently missed. There was no systematic bias to those omissions and since completely eliminating those subjects
because of an iten (or itens) of nissing data would have reduce? already low Ns to a point of suspected distcrtions, all scores obtained were used and Hs are therefore reported for each separate analysis in the results section. The complete data listing for each subject are included in Appendix C for the reader's perusal.

PESULTS

Stanford-3inet Intelligence Scailes
The Stanford-Binet scores for bnth are-and post-assessment were obtained from 94 of the 104 subjects of the study. ${ }^{1}$ The nean quotient anc: standard deviation for this grou? ? uring pre-tosting in September, 1963 was 85.94 and 11.75 , respectively. Fnx prst-testing the overall mean was 89.23 and the standard deviation was 13.20. (The means and standard deviations for each of the respective subgroups for this and the succeeding measures are contained in Appendix D.)

The analysis of variance is sumarize? in Table 3. No main effect differences were fuund. There were, however, sienificant interaction effects (C .05 ; df 2,76) for Treatment and Session and a triple interaction for Instructional Condition, Classroce and Session (\mathfrak{x}.01; df 4,76). An axamination of the means and standari deviations revealed opposite natterns for morning sessions than for afternoon sessions in regard to effectiveness of instructional conditirn. For the morning sessions the sequential sroun showed the greatest gains in intelligence quotient scores ${ }^{2}$ ($\mathrm{A}_{\mathrm{g}}=38.05^{\circ}$ S.D. $=10.03$) with expressive $(M=34.56: S . D .=13.92)$ and control $(M=35.18$. S. D. $=7.80$) quite comparable.

1 Three children were found to be untestable at the beginning of the school year and their post-tests are therefore not included in analysis of chanre scores. Their oroun and treatment assigments snd their postscores were as fcllows:

> | Subject A | Expressive/Classroom C/AM | 60 |
| :--- | :--- | :--- |
| Subject B | Control/Classroon C/PM | 59 |
| Subject C | Expressive/Classrom | B/PM |
| 78 | | |

2 The Stanford-Binet change scores were converted to a nositive number scale for which the point of "no change" was at the numeral 32. The figures cited as means and standard deviations in this section are based on this positive number scale. Thus, the mean of 38.06 reported represents a gain of 6.06 points• 34.56 represents a 2.56 gain' 35.18 represents a 3.18 gain: etc.

This pattern was reversed for afternonn sessions where control subjects showed greatest eains ($\ell=38.92: 5.0 .=10.81$) and sequential lenst ($M=32.07 \cdot$ S.D. $=9.90$). The afternoon expressive orcup $(M=35$: S.D. $=10.90$) was quite conparable to the morning grnup. Then anovas were Ione on a post hoc basis for each session separately; however, no significant effects were found for instructionel conditions; classronns; or interactions for either sessicn.

The triple interaction effects of Instructional Condition, Classroom, and Session were further investigated throurh the use of Multiple Range Tests adapter from Duncan's procadures for aprlication to sroun neans with unequal numbers of replications (zramer, 1956). These findinos are renorted in Table 4.

TABLE 3

analysts of variance for chafgr tn scores fron PRE-TESTINS TO POST-TESTIHG DU STATFORN-BINETS

Source	df	MS	\bar{F}
Instructional condition (A)	2	12.56	
Classrocm (b)	2	2.04	
Session (c)	1	1.07	
$A \times B$	4	5.85	
A \times C	2	32.40	4.59*
B \times C	2	11.37	
A \times B \times C	4	97.21	13.764**
Within	76	7.06	\cdots

$$
\begin{array}{r}
{ }^{*} \mathrm{p}<.05 \\
x^{*} \text { p. }<.01
\end{array}
$$

MULTIPLE RANGE TESTS FOR DTFFERENCES PETMTEN MEANS OI STANFORD-BTMET CEANGE SCORES

[^0] Condition
Classroom
Session

The Peabocy Picture Vocabulary Test was administerad to 103 of the 104 subjects. Rav scores were used in the analysis rather than cuotients. The mean for the total group mas 47.12 and the standar' deviation was 9.42. The results of the anolysis of variance are in Table 5. the analysis revealed no sionificant main effects or interaction effects.

Attention

The measure of attention was cbtaine: from 102 subiacts. The mean atten.tion scores for the cotal groun was 5.52 seconds with a standard deviation of 4.38. The analysis of variance is sumarized in Table 6. There were no significant findinss.

Visual Retention

The visual retention scores from the 102 subjects tested had an nverall mean of 4.5 and a standard deviation of 1.94 . The results of the analysis of variance are summarized in Table 7. It will be noted that significant differences ($F=6.07^{-}$df $1.34^{\circ} \mathrm{p}<.05^{\circ}$) wore found between sessions but net for the other main variables or for interactions. Althourh t-tests confirmed that the scores of children attending afternoon sessions were sionfficantly superior th those attending norning sessions ($t=2.83^{\prime}$ df $9^{\prime} p<.01$), further sub=nalyses revealed that while expressive and Control afternoon subjects were significantly sunerior ($t=2.16^{\circ}$ df $34^{\circ} . \mathrm{p}^{\circ} \mathrm{C} .5 ; \mathrm{t}=2.01^{\circ}$ df $31^{\circ} \mathrm{p}<.05$. resnectively) to their morning, counterparts there were not sirnificant differences betwean the Sequentinl groups in regard to session. then senarate anovas were done for each session indanendently in additional nost hoc analysis, no sirnificant effects were fount for instructional condition, classroon or intersctions.

Visual Discrimination

The visual discrimination scores from the 10 ? subjects ranyed from 1 to 10 with a mean of 7.50 and a standard Ievjation of 1.92 . Table 9 summarizes the analysis of variance findings for the visual discrfininetinr measure. The only significant F was for the trinle interaction effect of instructional condition
 between cells (Kramer. 195f) are oresentel in Table $?$.

TATTE 5

ANALYSIS OP VARIAYCE FOR SCORES OM JEABONV PICTUPF TOCABUTARY TSSTS

SOURCE

Instructicnal condition
(A)

2
Classroon
(B)
(C)
2.

Session
1
$A \times B$
4
$\triangle \times C$
2
$3 \times C$
$A \times B \times C$
Within.
4
83
17.52
$4.6 n$
7.98
3.81
15.77

MS
r
13.85
37.15
15.2h

Source	If	MS	F
Instructional condition (A)	2	1.40	
Classroom ($\mathrm{B}^{\text {) }}$	2	1.63	
Session (c)	1	19.91	
$A \times B$	4	4.56	
A \times C	2	2.95	
$B \times C$	2	1.51	
$\triangle \times B \times C$	4	27.98	
Within	84	37.29	

TAPLE 7

ANALYSIS OF VARTAHCE FOR VISUAL PFTFNTICN SCORES

Source	df	MS	F
```Instructional condition (A)```	2	. 06	
Classroom (B)	2	. 94	
Session (C)	1	6.00	6.07*
$A \times B$	4	. 50	
$\Delta \times C$	2	. 44	
L $\times$ C	2	. 28	
$\triangle \times B \times C$	4	1.37	
Within	8,4	. 99	

TABLE 8
amalysis of variance mor visual discrimination scopfa
Source
df
MS
F

Instructional condition	(A)	2	.14	
Classroom	(B)	2	. 81	
Session	(c)	1	. 71	
$A \times B$		4	1.06	
A $\times$ ¢		2	1.29	
$B \times C$		2	$1.3 \%$	
$A \times B \times C$		4	2.51	3.29*
Within		84	. 76	

MULTIPLE RANGE TESTS FOP DIFFEPTNCES SETWEEN MEANS OI! DISCRIMINATION SCORES

```Instructional Conditicn Classroon Sessicn```	$\begin{aligned} & \text { Expr } \\ & \text { A } \\ & \text { AM } \\ & 6.14 \end{aligned}$	$\begin{gathered} \text { Seq } \\ C \\ \text { PM } \\ 6.33 \end{gathered}$	$\begin{gathered} \text { Con } \\ C \\ A^{r} \\ 6.50 \end{gathered}$	$\begin{gathered} \text { Con } \\ \text { A } \\ \text { AM } \\ 6.75 \end{gathered}$	$\begin{gathered} \text { Con } \\ C \\ \text { PM } \\ 7.0 n \end{gathered}$	$\begin{gathered} \text { Seq } \\ A \\ A M \\ 7.17 \end{gathered}$	$\begin{aligned} & \text { Con } \\ & \square \\ & p r! \\ & 7.20 \end{aligned}$	$\begin{gathered} \text { Expr } \\ A \\ F M \\ 7.43 \end{gathered}$	$\begin{gathered} \text { Seq } \\ A \\ \text { pM } \\ 7.50 \end{gathered}$	$\begin{gathered} \text { Seq } \\ 8 \\ A 4 \\ 7.93 \end{gathered}$	$\begin{aligned} & \text { Seq } \\ & \mathrm{B} \\ & \supset \mathrm{M} \\ & \text { P.OO } \end{aligned}$	$\begin{aligned} & \text { Seq } \\ & C \\ & \text { Ain } \\ & \therefore .17 \end{aligned}$	$\begin{aligned} & \text { Expr } \\ & C \\ & \text { PM } \\ & 8.17 \end{aligned}$	$\begin{aligned} & \text { Fxpr } \\ & C \\ & \text { AM } \\ & 3.20 \end{aligned}$	$\begin{gathered} \text { Expr } \\ B \\ \text { PM } \\ 8.20 \end{gathered}$	$\begin{gathered} \text { Con } \\ B \\ \text { DM } \\ 8.67 \end{gathered}$	$\begin{gathered} \text { Expry } \\ \text { P } \\ \text { AM } \\ \text { S.i.7 } \end{gathered}$	$\begin{aligned} & \text { Con } \\ & A \\ & \text { PM } \\ & 0.00 \end{aligned}$
6.14		. 19	. 36	. 61	. 86	1.03	1.15	1.29	1.36	1.59	1.86	2.03	2.03	2.06	2.06	2.53	2.53	2.86
6.33			. 17	. 42	. 67	. 84	.34	1.10	1.17	1.50	1.67	1.84	1.84	1.87	1.87	2.34	2.34	2.56
6.50				. 25	. 50	. 67	. 70	. 93	1.00	1.33	1. 50	1.67	1.67	1.70	1.70	2.17	2.17	2.50
5.75					. 25	. 32	. 54	. 69	. 75	1.03	1.25	1.42	1.42	1.45	1.45	2.12	2.12	2.25
7.00						. 17	. 29	. 43	. 50	. 33	1.00	1.17	1.17	1.20	1.20	1.67	1.67	2.00
7.17							. 12	. 26	. 33	. 66	. 83	1.00	1.00	1.03	1.03	1.50	1.50	1.83
7.29								.14	. 21	. 54	. 71	. 38	. .89	. 81	. 91	1.38	1.38	1.71
7.43									.07	.4n	. 57	. 74	. 74	.97	. 77	1.24	1.24	1.57
$7.5 n$. 33	. 50.	. 67	. 6.7	. 70	. 70	1.17	1.17	1.50
\& 7.33											. 17	. 34	. 34	. 37	. 37	. .84	-. 34	1.17
T 8.00												. 17	. 17	. 20	. 20	. 67	. 67	1.00
8.17												 03	. 20	. 50	. 50	-. .83
8.17														-3	. 03	. 50	. 50	-93
2.20														$\cdots 3$. 3	. 47	. 47	-80
8.20																$\bigcirc .47$. 47	- 80
3.67																. 47	. 47	- 3
8.67 0.00																	--	.33 .33

Task Persistance

Task persistance scores were obtained from 100 suhiects. The range was from 15 to the ceiling level of 240^{3} with an overall mean of 141.25 seconds. The standard deviation for the tntal groun was 76.15 . The analysis of variance results are presented in Table 10 . There were no significant findings.

Divergent Uses: Total

The total scores for individual subjects on the nivergent Uses task ranged from 1 to 22. The overall mean was 12.75 and the standard deviation 4.57 for the 100 subjects tested. The sumarization of the analysis of variance may be seen in Table 11. Significant differences will be noted between sessions ($F=4.57$: df $1.32^{\circ} \mathrm{p}<.05$). Althouph t-tests of difference between means confirmed that subjects in the afternoon session performed significantly better than the morning groups ($t=2.36$: df 98: p<.6), further sub-analyses established that significant differences in sessions could be substantiated for only the expressive groups ($t=2.04$: df 32: p<. $\mathbf{i 5}$). The differences between morning, and afternoon control groups ($t=1.94$: df 31) or sequential groups ($t=.55$, df 31) fell short of the $p<. C 5$ level of conifideuce then sebarate anovas were done for each session independently in additional post hac analysis, no sipnificant effects were found for instructional condition, classrnom or interactions.

Divergent Uses. Weighted

When the responses on the Divergent Uses Tasks were weimhted according to the scaling values described in the fvaluation Instruments section, the ranfe for the total grouns was from 1 to 28 with a mean of 16.79 and a standard deviation of 6.94. The results of the analysis of variance are contained in Table 12. No significant effects were found on this dimension.

[^1]$-25 \nmid 26$
tatele 10
ANALYSIS OF VARIARCE FOR TAST PERCISTANCE SCORES

tablf 11
analysis of vartancer for total scones on oiverogit uses

SOURCE		df	MS	F
Instructional				
Condition	(A)	2	7.17	
Classroom	(B)	2	3.12	
Session	(C)	1	21.91	4.57*
A \times B		4	9.90	
$A \times C$		2	4.50	
B \times C		2	12.33	
$A \times B \times C$		4	. 75	
Mithin		82	4.79	

df
MS
F

Instructional			
Conditirn	(A)	2.	20.23
Classroom	(B)	2	13.72
Session	(C)	1	40.25
A \times P		4	13.17
$\wedge \times C$		2	4.36
B $\times C$		2	9.85
A $\times 3 \times \mathrm{C}$		4	3.76
Within		8.2	1.7.30

Classifycation• Principle

The classiffention task when scored accorcine to the repree to which logical principles were used yieldei scores ranfing from 4 to 17 with a mean of 9.16 and a standard deviation of 2.40 for the total sample of 101 suhjects tested. The analysis of variance presented in Table 13 indicates that there was a significant main effect ($F=7.92$: df $1,83 \cdot p<.01$) for session. There were no other significant findings. Further analysis confirmed that children attendine afternoon sessions performed signifjcantly better at the classification task than the morning attending children ($t=3.05$: If $99 \mathrm{p}<.01$). Cross=cmmarisons according to respective instructional conditions, hnwever, showed only control groups with significant differences between sessions ($t=3.05$, if $31 \mathrm{p}<.01$). The differences between morninf and afternoon grouns were not significant for either the sequential or expressive instructional condition groups. then anovas were done on a post hoc basis for each session senarately, no significant effects were found for instructional conditions, classroms, or interactions for either session.

Classification-Pattern

Then the classification tast resnonses were rescored accoriling to choice patterns as described in the Evaluation Instrument section, the mean hecame 12.26 and the standard deviation 3.74. The analysis of variance results are in Table 14. It will be noted that the differences hetween sessinns are significant ($\mathrm{F}=$ \&.37. df $1_{s} 83 \cdot \mathrm{p}<. \mathrm{Gi}$) . Again, as in the case with classification-nrinciple findings. only the afternoon control grouns were significantly superinr to their morning counterparts ($t=3.36$: df $21^{\prime} p<, 01$). Sipnificant differences were not found through the use of t-tests between sessions for either sequential or expressive froups and anovas done on each session separately in a post hoc analysis showed no effects of instructional condition, classrom or interactions.

SOURCE		df	MS	F
Instructional				
Condition	(A)	2.	1.49	
Classroom	(B)	2	. 51	
Session	(C)	1	0.63	7.92*
$A \times B$		4	. 87	
$A \times C$		2	1.16	
B \times C		2	. 67	
$A \times B \times C$		4	1.25	
Within		83	1.22	

TABLF 14

INALYSIS OF VARIANCE FOR CLASSIFICATION TASKS SCORED FOR CHOICE PATTERN
SOURCE

Instructional

| Condition (A) | 2.40 |
| :--- | :--- | :--- |

Classroom (B) 2 . 51

Session	(C)	1	24.59
A \times B	4	1.94	$3.37 *$
A \times C	2	4.46	
B \times C	2	2.29	
A \times B \times C	4	1.74	
Within		2.94	

SUMMARY AND CONCLUSIOHS

The design utilized in this study enable comparisons between prouns of kindergarten children who had experience! either a regular schcol program plus sequential instruction, n regular school norram nlus an expressive activities program, or only the regular school prosram. Comparisons were also mate between the three base classrooms involved in the study and between sessions.

The findings may be summarized as follows. There were no sirnificant differences found on the Peabody Picture Vocabulary Tests or the measures of attention, task Dersistance, or diveroent uses-weighted. Differences between sessions were noted for divergent uses-total, classification-nrinciple. classification-pattern, and retention. The afternoon grouns were found to be superior in each of these instances. In suh-analyses, however, it was found that sequential groups did not differ significantly between sessions on ary of these dimensions. The overall. differences stenmed orimarily from control and expressive groups. In fact, only the afternoon control grouns were stanificantly superior to the morning control groups on the two measures of classification while it was only the expressive groups whe had significant differences between sessions on the divergent uses-total measure. Both expressive and control groups showed significant differences between session in the visual retention analyses. It is only possible to speculate on findings in remard to session differences. Since the effferences were noter primarily for control grouns and to a lesser extent, expressive prouns, the behwior and the characteristics of the special teachers assigned to the instructional conditions according to session do not seem to be a prime factor. These spectal teachers had no contact with control subjacts. Explanations must be sought, it would seem, in factors such as group compesition, time of fay. Although observations of classrooms were not incluried in the original promosal and planning of this study, some assessments were made of initividual child encounters in the classrooms during the school year and are in the process of analysis. Further explanations may possibly ke forthcoming from this data and, if so, will the made available upon completion.

Interaction effects between instructional condition and session were found on Stanford-Binet change scores with morning sequentials ranking hish while for the afternoon groups, sequentials were low and controls high. Triple interactions of instructional condition, classroms, and sessions were also noted for this measure. The use of multinle range tests between differences in means for sub-groups revealed no natterns which would supnort conclusions about the effectiveness of any particular combinations of conditions.

Although triple interactions of instructional condition, classronm, and session were alse noted for the discrimination measure, the multinle range test of differences in means afain was not heloful in delineating the comparative influence of any of the various sets of concitions. The findings in rerard to these triple interactions are indeed anbigunus.

There were no other results which would give direction to assassing the effectiveness of the programs utilizet in this study. In sumary then the findings of this study gave virtually no support to the advantages nf sequential instruction or a spectal program of expressive activities in achition to the regular classroom propram.

Since these findings are quite discrepant with the conclusions of prior studies it is necessary to consider why such might be the case. One conclusion might be that other components of the Sprigle nrograms may have heen contributing nore to the children's ievelopment than is generally recognized. Although efforts were made in this study to enrich all of the base classrom situations through increased attention to providing stimulation via activities and equinment throughout the school year, there was no effort to crordinate the snecial sequential instruction with the classroom nor to duplicate the bnse classronm environment of the Learning to Learn School. It seems possible that the base classroom situation at the Sprigle centers, or other phases of the program such as parental involvement, have made a major contribution to the substantial gains reported in previous studies.
Λ secont possible explanation might be that the program of sequential instruction utilized in this study was not sufficiently comparable to the Sprigle instruction. Whether this is the case can be determined by further comparisons of the descriptions inclucea in the Apnendices of this renort with the delineations of the Learnine to Learn approaches as these become available.

It further seems reasonable to speculate that the deep involvement of the authors of the Learning to Learn program at the exnerimental stages may have been, as suggested by Van de fiet (1966), a major contributinf factor to its success. The results of other current and future replications wfill be necessary to assess this dimension.

The question poser? by this study, of whether twenty minute dafly proorams of sequential instruction or expressive activities lead to signdficant improvement of performance on selected relevant tasks by younc disadvantared children: rust be answered in the negative. There was no clearcut evidence to sunport the advantace of this kind of instruction.

Blank. M. Copnitive Gains in Devrived Children Throuch Indivicund Teachings Individual Teachings of Lanquage for Abstract Thinking. Unpublished nanuscript, Albert Einstein College of Medicine, 1967.
Charlesworth, R. Classification skills. Symposium paper nresented at AERA. February, 1969.
Clasen R. E., Spear, J. E., and Tomaro, M. D. A comparison of the relative effectiveness of two types nf preschool compensory programing. Jnurnal of Education Research, 1969, 62, 401-405.
Day. D. E. The effects of different linguage instruction on the use of attributes by pre-kinderearten disadvantaged children. Paner presented at AERA; February, 1968.
DiLerenzo, L. T. and Salter, R. An evaluative study of pre-kindergarten programs for educationally disadvantared children follow-un and replication. Paper presented at ARRA, February, 1068.
Kramer, C. Y. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics, 1956, 12, 307-310.
Lenrow. P. B. Preschool socialization and the develonment of competence. Project Evaluation Report. Berkeley, California" University of Californis, 1963.
Sprifle, H., Sprisie, J., Van De Riet, V. and Van fe Rict, H. A Tresh Approach to Early Childhood Elucation and a Study of its Effectiveness. Renort tc the Carnegie Corporation of New York. Jacksonville. FloriraLearning to Learn Schools Inc., 1967.
Van de Riet, Y. and Van de Riet, H . An evaluation of the effects of a unique sequential learninf program on culturally denrived children. Unpublished report submitted te Office of Econnmic Onmortunity. Gainsville, Florida. College of Fealth Pelated Professions, University of Florida, 1966.
Van De Piet, V. and Van de Riet, H. A sequertial learninc program for preschnol children and an evaluation of its effectiveness with culturally disadvantared children. American Inurnal of nrthonsychiatry. 1967, 37.

APPENDIX A

SERUENTIAL IMGTRUCTIOH POOGFAM

The sequentially-arranged curriculum user in this stury was divided into three phases desionated as motor, langunge arts, and snace and numher. There was considerable overlay betwean them, however, and each encompassed more than the signle designation would indicate. Fin exampln, the first phase was considered a motor phase largely becausa each curricula nortion centeref around a motor activity. Built into the motor activity, however, was intentional exposure to vocebulary, problem-solving, discriminatinn, matching, comarisons; etc.

In the intiial introduction to each activity the children only hear: the words and concepts as modeled by the teacher in relation to their motor activity. In the following lessons the new concents and words were included in relation to more complex versions of the same kind of motor activity or with new activities with increased expectation for comprehension and usage. Consideratie exposure was provided prior to expectation for mastery.

Concepts: vocabulary, experiences were carefully arranged rithin each phase and across phases to provide a logjcal sequence of increasinoly complex and abstract learning activities.

A detailed explanation of the motor phase follows and briefer descriptions of the language arts and soace and number phases are at the conciusion of this section.

Potor Activities = Phase I

MOTOR ACTIVITY \#1
Name Step-in Boxes
Materials : cardboarci construction of ajoining onen-tnoper forms (bexes) ranging in height from 5 to $24^{\text {p }}$ providing a nine-unit matrix of height/wilth variation
Activity ${ }^{\circ}$
Children were given turns to walk throuph the boxes. They were encouraged to vary their way of doing this, f.e., going all the way, stopoing and going backward, going sideward. They were asked to copy patterns set by the teacher and by the other children.

The teacher made a point of providing vocabulary to match the observations of the cardboard construction and the physical activity it stimulated. The vocabulary intentionally modeled included high-er-est, low-er-est, forward, backward, turn around. first, second, third row, midcle row; last row, stoD. begin, easy, hard, same, different.

The teacher asked for observations such as, Did John go all the way through? Did Deedee do it the way Michael did? Can you think of another way to do it?

Performance criteria.
Does the child walk through the boxes without difficulty (to a reasonable height for him)?
Can the child follow a pattern set by another which has one variation in it?
Two variations?

MOTOR ACTIVITY 非2

Name" Tunnels
Materials Tube-like encasings of varying liameters - 4 tr 36 . at least one of which is approximately frur feet in lencth

Activity
Children were invited to crawl throuph larger tunnels (3. and 24 diameter) and their ralative size was discussed. Th" children were then asked whether they thought they could go throuph other snecifically-Aesinnated tunnels. They were then asked to try and were later re-nsked about some of the more auestionable ones after being presented with several others.

For the ones that were too small for them to crawl through, they were asker if someone, maybe at home (baby) could crawl through. For the smallest 4: tunnels, they were asked, "Can anyone crawl through? Could your head go in? Could a baby? Do you know an animal that could?, etc.

The children were encouraged to vary their way of roing through (hackins in. going in forward and reversing to back out, etc. They were also asked to copy patterns set by the other children.

Performance criteria:

Can the child nredict which of the series of tunnels he can successfully crami through prior to trying?

Can the child follow a pattern set by another which has nt least two separate actions?
: $10 T O R$ ACTIVITY \#\#
iJame: Stepping Stones
Tterials: Twenty-four linoleun blocks or other $8^{\prime \prime} \times 9^{\prime \prime}$ sheets: 0 of each primary color and matching paner pieces for attaching to the shoes of participants.

Activity:

Tro colors of the tiles ware finitially arranged across the floor as indicated-
red yellor red yellory \quad yellor \quad reá yellor:

The child vas abted to match the papers with the tiles. These colored pajers were then attached to the children's feet, rith red on one foot and yellow on the other. They rere asked to malt on the tiles - matching their foot color to the tile color. Cher children reere asl:ed to ratch to make sure that the wallers matcied colors appropriately. Variations of color and tasin were added - removing red and replacing it ritt: blus, random additions of a third color for distraction, reversing the direction of vaiking along trail, $\approx t c$.

Upon completion of the activitiss the clifldren were engaged in sorting the tiles into color nilas for storage. Throughout the lesson the teacher intentionally modeled the color names.

Performance criteria:
Can the child match color to tile in walting adong the traill?
Gan the child identify when another has erred?
Can child sort colors in stacling tiles?

MOTOR ACTIVITT \#4

Jame: Falking Board
Materials: Walking board - commurcially availabl.?

Activity:

The childran were invit \equiv d to walk along the board in any way they wished. The teacier described what she eaw them doing with terms such as all the way, half-way, almost half-tiay, forvard, backward, sidevays, turning, standing on one foot, jumping off, big stens, little steps, tin toe.

Individual childrun were asked to do a "walk" while all watched. The teacher copied this walk and then invited the other children to see if they could copy it also. Other children were then asked to do a special walk for somtone to copy. Spectators were asked, "Can you tall in words what Timmy did? Did Brad do it exactly the vay Timmy did?"
Performance eriteria:
Can the child walk both forvard and backward on rail unon request?
Can the child follor two distinct activities as modeled $\operatorname{l}: \mathrm{y}$ another?
Can the cinild label another parson's aciviticy as going forward, backtrard, halfuay, all the way, as like another's, as different from another's?

:IOTOR ACTIVITY \#5

Hame: Arcines
Iaterials: Building ilocks - including some long, slim variety, i.e., $2^{\prime \prime} \times 3^{\prime \prime} \times 24^{\prime \prime}$.

Activity:
The teacher constructed a large ($24^{1 "}$ high end $24^{1 "}$ wide) and suall ($8^{\prime \prime}$ high and $18^{\prime \prime}$ wide) arch. The children mere invited to try to climb under or cravl under each as they wishad. These arches mere then removed, a new set of differing sized constructed, and a child asked what he would like to do mith it. If necessary the teacher gaid, "Would you try to go over or under?" Befora allowing the child to try the teacher asked another child, "rhat do you thinl will happen when Jimny tries to go over (or under) this arch?" The child was then alloffed to try and then to build an new arch for someone also to do.

Ferformance cirteria:
Can the child predict rtether he can successfully crarll under or over arch?
Car child often predict whether another child will be abl: to do what he has stated he :rill do?

Can child indicate minch of t:ro arches is high or lov? Can he state whether another child wint over or under?

Can the child arrange blocks to construct either a high or low arch unon requast?

:10TOR ACTIVITY \#6

name: Color Floor irail
ifaterials: Floor covering of brown wrapping naver (or any large sheets) $8^{\prime} \times 10^{\prime}$ with color lines (red, yellor; blue) leading from one end of the paper to the other. One color trail leads directly from one end of the paper-to the-other; another'trail should. be curved; a third, zigzagged. all trails, however, should have the same beginning and ending point. At the further end of the paper were placed several rubber 200 animals (Creative Playthings) in constructed barred cages (shoe boxes) which gere gaily and attractively decorated.

Performance criteria:

The children were told they were pretending to have a trip to the zoo. The difference between this pretend 200 and a real 200 were discussed, the animals examined, named, discussed. The children vere told that there were roads or trails that went to the 200 , that they could either walk on a red trail, a yellow trail, or a blue trail. Each child was then asked raich trail he would walk on and invited to try to see if he could follor the same color all the way. Tha color names were told the riaildren by the teacher or other children where necessary. The teacher used terms straight, corners, around, turn, etc. as the children walked their chosen trails.

The children were asked which trail would be the shortest, which thev would take if they were in a hurry, etc. When they had difficulty telling,
which was shortest, the teacher helped children to walk each taking steps together to see which got there first, string was put along both and compared after removal, etc.

The group was asked if they thought anyone could tell which trail they were walking on if they were blindfolded. Volunteers were blindfolded, led along the trail by the teacher, and then asked to identify the trail they had been taken along. The other children were asked to observe and confirm or correct answer.

Derformance criteria:

Can the child follow trail even though it may intersect with another color at several points?

Can child tell whether he has gone on the straight, zigzagged, curved trail when blindfolded - by pointing or telling color?

ACTIVITY \#7

Vame: Fishing
Iaterials: 6-10 0^{15} cardboard fish painted with rad, blue, black temnera naints with large eye inole ($2^{\prime \prime}$ in diameter); Tinker Toys, Iinled tubine or other adjustable lengths of rod-like materials to mice polus of several lengths.

The fish were arrangad at various distances from a tape mark along the floor indicating the shore line. The fish were propped up from the floor at one end with small hlocks to make the center holes accessible for spearing with the poles.

Activity:
Each child in turn vas given a $12^{\prime \prime}$ pole length and asked if he could "catch" an; of three fish (red, blue, or black) placed at increasing distance from shore line or whether he should wait to receive another piece for his pole. At each receiving of pole pieces the child was asked to state rhether he would try for a fish and, if so, what color, or whether he rould wait. The other children commented on his choice, whether he mould be successful in reaching the fish he wished to catch, etc. The teacher replenished tho supply of fish in the pond, offered an additional pole niece at each child's turn, comented upon the number of fish caught by color designation, totals, length of poles, etc.

At the completion of the fishing activity the children helped to sort fish for storage according to color. Performence criteria:

Can child usually predict whether pole will reach designated fish?
Can child correctly label fish caught by color?
Can child indicate phich fish are alike? Different? Thether pole is longer? Shorter?

ACTIVITY 非 8
Hame: Floor amp (from start linc to buildings)
Materials: Mcdels of three buildings - house, school, store; 1engths of rope and wooden dowels cut to three lengths ($2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}$). The buildings are placed on the floor at predetermined distances (to match dowels) from a tape-marked start line. Tinker Toy pieces.

Activity:

The children were asked to sit at the start line. After discussing the building models they were given, in turn, one of the rope pieces (later dowels) and were asked to predict whether same would reach from the start line to make a road to any of the buildings. They were then invited to try to see if the piece reached all the vay or was "juet the same." After several presentations to some of the children of each length individually, ali three of the lengthe were presented simultaneously and they were asked to decide which of three they would choose to make a road to reach the school, etc. The teacher used the words near(er), far(ther), leng (er, est), short (er, est)repeatedly in relation to the activity.

Tinker Toy pieces were introduced and children invited to construct roads to "just fit." When the children had difficulty in forming exact lengths the teacher handed them the precut dowel pieces and asked if they would be useful in figuring how long to make the Tinker Toy road.

Performance criteria:

Can the child predict within a foot or so which of sticks will reach to specified building?
Can the child recognize when length of Tinker Toy will ont fit without trying each time against criterion piece of doveling while building same length?

ACTIVITY \#E
Honz: Floor ilap - Building to 3uildin:
 format at predetimined distances from ench other. The of the buildins were placed at 1^{\prime} from each other; the other at a noint in opposition to the others, in format such as the following -

Activity:
As in Activity \#3 - except that getimates and constructions were made for spaces between kuildings rather than from Start Line to buildings. Children remained behind the Start Line, hovever, while making these judoments. Performance criteria:

Same as \#3.

Name: Floor Trails - Forms
Materials: As in Activity $\# \in$, floor covering of brown vappine pader (or any large she:3ts) $-8^{\prime} \times 10^{\prime}$ on shich were pasted small geometric shapes to form a trail of squares, a trail of triang? $\epsilon \in$, a trail of circles. These trails were arranged to begin at the same point at one end of th.: paper and were armanged on intersecting paths tobe teiminated at the

- point on the other side of the paper. Gne of the trails vas straight; one zigzagged; one curved - as in Activity \#6. The store model used in previous activities was placed at the termination of the irails. A model of each form was also placed on a card - $3^{\prime \prime} \times 5$ ".

Activity:

The teacher tole the children that they were going to take a pretend trip to a store. A child was then shown one of the geometric forms on a card and he was asked to find the trail made up of those shapes. He was asked to follow the trail using the shape he was given on the card. They were invited to tell what they would buy if it vere really a store at the completion of each trip.

The teacher discussed the similarities and differences in the trails, the time it took to ge on each trail, etc. and repeatedly referred to squares. circles, triangles as she talked to the children about their activity.

Volunteers were blindfolded and led along a trail vhich they were later asked to identify by indicating which of the displayed forms (on cards) ey thought made up the trail they had walled.

Performance criteria:

Can the child follow the trail even though it intersects :rith another?
Can the child distinguish betreen curved and straight trails wher blindfolded?

SOTOR ACTIVITY ";11
Hame: Fitting Otjects to Encasines
Saterials: Ralls, model cars, model buildings, toy peorif in graduated sizes with cardboard encasings (onen on one end) to exactly fit each obfect; one additional toy rith caruboard encasing.

Activity:
The teacher demonstrated f_{1} ov a toy can be nut into its matchino bnx
 She then displayea the three frames which fit the balla, held un the large ball and as!eed the children which tox rould be "fust right" for it. A child was invited to place the ball in the casirg, another to tell whether it was "just right." The ball yas then removed, a smaller one nresented in a similar manner.

The boxes were then removed and orly one reintroduced while all three balls rere displayed. The teacher asked for oredictions os to wich iell would fust fit the boxes. A child pas invited to try, etc. The same general procedures were followed for each group of of:jects and their encasings. Children were later given the complete set of objects and natching boxes simultaneously and asked to fit the objacts to the boxes. Performance criteria:

Can the child prodict which frame will be correct for siven otiects prior to trying them out?

MOTOR ACTIVITY \#12

Name: Seriation of Encasings: Seriation of 0r: Ects Witiout Fncasinss Materials: Same as activity \#ll

Activity:

The tiacher presented a set of encasings and asked a child to nlace in order - first, beside each other and, second, nested inside each other. Each of the previcusly used sets of encasings was presented so that each child had opportunity to arrange and nest.

The encasings were next ranoved and the sats of ofjects presented one at a time. The teacher displayed all of the balls in mixed order, selected the smallest and asked a child which of the remainder he would place next to it. The other groups were similarly introduced.

The teacher rapeatedly used the terms next, large(er, est), small (er,est), middle-sized, stc. in relation to the activity.
Performance criteris:
Can the child order the objects according to size?
Is the child beginning to use terms such as small, smaller, large, largest, etc.?

HOTOR ACTIVITY \#13

Hame: Pattern Copying I

Matorials: Small plastic or wooden blocks of various sizes and colors (reds yellow, blue, green)

Activity:
The children were invited to play with the blocks for a period of time. They were then asked to return the blocks to the central pile.

The teacier modeled a simple pattern a d the children were asked to exactly copy the pattorn. Increasingly complex patterns of varying color and shape were used. The teacher used terms such as rows, over, undar, next to, in back of, green, blue, square, tirang1c, etc. in relation to the activity. Parformance critoris:

Can the child copy a model with variation of two forms and two colors in sinple arrangement?

MOTOR ECTIVITY \#14
Name: Pattern Crnying II
Materials: Same as \#13
Activity:
The activity tias similer to \#1 13 weept that the teacher constructel rather difficult patterns for chileren to copy and sonn transferred the mocelmaking to individual children. She then conien the chila's model asking for advice from the other childron such as, "that piec: do I neer? here? Lat's see - can I uee thie red rectancla piace anyplace?" The teacher followed whatever verbal directions were givan by a chill risther corrct or not and asked the advising cifld if it tere right. Then a child rasnondes with vogut general advice, i.c., yut it over ther or by pointing the toncher supplian words, i.e., "Ok, do you maan put it on ton of the sreen scuare pioce?" Performance criteria:
Can the chilc copy a model ryfth variation of two forms ard tron colors ir simple arrangament?

Can the child give any verbal directions to mother constructing a model?

```
#--
```

YOTOR ACTIVITY \#1.5
Name: Floor :lap to Forms
Materials: Cardboerd forms (triangle, circle, rectengla, stuare) :ere arranged on a large paper at varying distances fram each other. Lines were painted on the paper between the forms. Doveling was cut to match each of these lines.

Activity:

The chilcren tere seated around tire edges of the papar and the teachor initially discussed and identified the forms by name (wher the chileren could not). The children reve then askia, one at a time, to move their finger along the path from a specified form to another. The teachor indicated the form by pointing as well as by name whenever it seemed necessary.

The dowels were displayed and the children asked to nredict which nicce would just fit butween the triargle and the circia, the rectangle nnd the criangle, etc. When necessary a child was asked to stand on (or point to) a form and anothor to furicate the other form to help a child in attending to the specified task. The lengthe wers than triec and, if not osrrect, another choice was made and tried.

Tinker Toy pieces were introduced and vere joine:? to form legfths th fit betweer forms.

Throughout the estivity the tisacher used terms such as circle, snuare, rectangle, triangle, leng(er, est), short (er, est), not lnng enourh, ton long, too short, etc. Performance criteria:
Can the child precict milich length of doveling will rinch from nine form to another?

MOTOR ACTIVITY \#16
Name: Seria¿ion of Objects - 2 and 3-Way Classificatior
:Iaterfals: Several sets of objects (cars, toy furniture, be'ldings, people, etc.) in graduated sizes and runners out from cardtc ... :o form indfcators for separation of classes. The runners would be arranced as follows.

Activity:

The teacher displayed the placement indicatcrs descrited above and discussed the paths. She then showed sets of objects (in mixel order) and as!e? a child to choose the largest in each groun. These oh,jects, if correct, were placed next $: 0$ each other at the top left hand couner. A child was next asked to place one of the middle-sized objects and the nrocedure continued until both groups were placed in appropriate classification rovs and in seriated order. They were then removed, remixed, and nresent all at once to children for correct replacement.

Other sets vera also mixed and presented for ciassification according. to kind of object and size. Three sets of objects were finally presented simultaneously in mixed order and a child was aslred to arrange them along three paths starting with larger first; jeter, with smaller first, in reverse order.

Performance criteria:
Can the child arrange the objects correctly into a three-way classification and in aprropriate seriation?

Is the child using terms such as snall(er, est), large (er, est), etc.?

MOTOR ACTIVITY \#17

Name Pattern Conying III
Paterials Sama as \#13 and 非14 hrown saner lan laroe erougt to hold a variety of blocks

Activity
The teacher created a model nattern ari? tis children in turn. were invited to reach into the bas and pull out one rloci. They then had to decida
(1) whether they needed t?at narticular bloc! to cony the model or; if not:
(2) whether they could pive it to another child whe did neel ft or (3) whether they would need to put it back and wait for another turn. fimphasis vas placed on finidhin the model and then on helning others finish - not or beinr first or winning.

Performance criteria

Can the child determine whether a "oulled tinck is needed to complete an unfinished design?

MOTOR ACTIVITX *1,

Name- Forn Gane I

Matcrials- Felt board or flancl leard. 4 sets of scuare3, triangles circles: rectanoles (a set consistino of a red, yellow blue. erten, blacte version of each fom).

Activity

The teacher placed the felt board so that it could be easily seen ty the children while they were sitting in a circle. All four sote of foxms were placed in the center of the circle of chiliren. The teacher talked with the children about the names of the colors as she sprfads them cut mixing forms and color, lie. Here is a red square, and. here is a yellow circle. This is a yeliow square. etc.

When all are displayed the teacher said. 论 are soing to sort these out in a snec al way. I'll start by puttine this on the board (chooses a red square) and then tilis one (1 red trianole). Can you find other shanes that are the same color to nut on the board with these?" The teachor frenuently asked. Why did you choose this one?" and, if necessary. "Did you chonse it hecause they are both red? That is the same about all of thrse?

The same procedure was follower for each of the five colors. The focus was then changed to shape. The squares, circles, ftc. wer: placed on the felt. board together repareless of color.

Finally, all of the forms wore arranged in matrix format with similarity In color forming one dimension and shape the other. Intentional orrors in placenent were made by the teacher to deternine children's vercention if the placenent criterion. Performance criteria.

Can the child match color ignoring form diffurences and similarities?
Can tha child refer to the colors by name?
Can the child match form fisnoring color differences and similarities?
Can the child snot erress in placement in the tuc-way clasafication in the matrix arran?ement?

-544_{i}

MOTO ACTIVITY ${ }^{\text {Plo }}$

Jame Metai Erames

Materfals Templates of basic forms with insartirns

Áctivity

The chileren were first invited tomatch aack frame with its correct insertion. Several experi ances of sortino nut the frames and insertions provided opnortunity for use of appronriate labcing of the forms ty the teacher. The insertinns were then placed in a rnw at the far side of the room from the children and teachers. The teacher then showed the children a single frame and asked z child to walk to the array on the other side of the rom and choose the correct insert. Unon his return his choice was tried to determine fis corractness: etc.

Performance criteria.

Can the child choose the correct form for insertion into a frame through visual inspection?

Can the child sufficiently ranmber the cinaracteristics of a form to allor appronriate choice after a delay of several secnn?s?

MOTOR ACTIVITY \#20
Name Form Game II
Materials Playing boarls, actually form Eoards, each of a different arior, constructec from $8^{\prime} \times 12^{\circ}$ cariboarcs from which have been cut the forms children have had contsct with in previsus activities matchin? color sets of inserts for ench of the boards; brown naper bar

Activity ${ }^{-}$

The children were each oiven a rlaying board which they nlaced on the floor in front of themselves. The colored forms were nlaced in gaper bar and the bag within reach in the center of the circle of children.

The children were reminded of the previous activity using the fons and felt board. The teacher said: Today we are soing to nlay a rame with shanes and colors a different way. Each of you has a cardfoard with shanes cut out of it. we call these playing boards. That colnr is your nlaying board, ?andy? What color is yours, Batsy?: Pandy, you begin by nulling one shape from the bas. What is ic? ?hat color is it? Tho has a playing loard that color? Can you nut it where it belongs on John's playing board, Pandy?" Betsy, you can pull a shape out next. That color is it? Does it belonf on your playing board? Whose playing bourd does it belons on? play continued until ali toards were completed.

Performance criteria:
Can children tell names of the colors used?

Can child determine where on toard \exists shape goes through visual inspection?
Can child match solox of forn to approoriate form board?
yotok ACTIVITY *21

Name: Bean Bag Game

Materials: Twelve lean bags; a large box from :hich has beer cut a circle, a triangle, a square of approximate area of $40-60$ sq. inches. Each of the squares cut into the box were outlined with varying colors to emphasize the form and to add an additional dimension for description. (At a later time additional smaller shapes vere cut from the same box surface and outlined in contrasting colors to larcer forms.)

Activity:

The teacher discussed the shapes and colors with the children. The children were then invited to toss beanbags into the box and the teacher commented with the throws which shape and color the child had aimed for and hit. The children were asked questions such as, "Who can throwi a bean bag into the red triangle from way back here?" "thich one shall I try for, Sarah?"

At a later time when aiditional smaller holes had been cut into the box the teacher used the same general procedures. Children were then asked questions such as, "Can you throw the beanbag into the small red square? The large blue trinangle? Whare did yours go? Which one are you going tc try for?" Performance criteria:
Can the child specify which terget he will try to hit?
Can the child come close to hitting a target he specifies?

MOTOR ACTIVITY \#22

Name: Template Activity

Materials: Masonite templates for each child for each of the folloring forms circle, plus sign, square, triangle

Activity:

For each of the forms the teacher showed the children how to hold the frame and draw with a pencil or crayon inside the form. She discussed with them the characteristice of the form they vere making. (Examples - the circle has no corners, no change in direction - just go on around; plus sign has two lines so you have to pick up your pencil.) For emphesis of diffarance between each form strips of yarn were arranged on the flannel board to form the shape. also.

The teacher later gave the children blank newsprint shicts and crayons or pencil and aiked them to copy the same displayed form. If thiy had difficulty she had them use the template for additional practice before trying again.

As a final activity in regard to each of these forms the tancher exhibit.d a form, removed it from sight, and asked the children to male it on their paper. They were also requested to make a square, etc. without first surveying a model. Performance criteria:

Can the child copy the forns?
Can the child reproduce the forms from memory?
Can the child make the forms upon verbal request?

Language Arts Curriculum - Phase II

The second phase of instruction closily followed Dr. herbert Springle's manuscript, Teacher's Guide for Language Arts, which hed been submitted to Science Research Associates for comercial development and which was provided to the project by Editor Nora Mcirillan.

The series primarily involved experiences, discussion, related ganes contering around units on thc human body, clothing, fruits, vegetables, meats, furniture, animals-farm and zoo, and transportation. The suggested procedures, in most instances, outlined a progression from contact with real instances, i.e., mirrored reflections of human body, children's own clothing, real fruit, etc. to model representations to two-dimersional graphics, to line drawings.

The major emphases were on labeling instances and categories, familarity with descriptive attributes, recognition tyth reduced cuas, i.e., tectile cues only, line drawings only, etc. Most of the units culminated with a game in which a turn of a spinner indicated to the child player which pictured object he could take from a central array to play on a playing board. The child was in each of these instances expected to name thes object, tell its "family classification" and place it on his playing board in the appropriate area for its category, i.e., zco animals belonged in the pictured zoo and not on the pictured farm.

Since the materials obtained from Science Research Associates were in preparation for comercial distribution in the fall of 1968, they can no doubt be obtained directly from them or from Dr. Herbert Sprigle. They have therefore not been appended hert.

Space and Nunater Curriculum - Phase III

The final phiase of instruction followed thw tacher's guide prepared by Dr. Herbert Sprigla (1967) for the use of Inquisitive Games Tri, Exploring llumbr and Spaci. The contents of two Science Research Associetes commercial iits were used, the suggested urder of the prescribed games and activities folloved, and the procedures closely adhered to. Only in the case of some of the early activities which duplicated some of the Motor rhasa activitics were omissicns made in regard to specific games. The extensive listing of suggested ralate? activities in the Teacher's Guide wart used minimally at the deecretion of acl. teacher who tock into account the suitability firr the particular chiluren involved and the total amount of time for instructional activities. Although some of the sequential subjects completad the Space and Number series and all were at some point in this sequenc: at the termination of the program, not 111 finished all of this serias.

APPEIDIX B

60t61-

Expressive Activities Frogram
For the exprossive activitivs progran the teacher nrevided materials and, when necessary, estailish=c proccdurea for accaptable use of materials, i.e., "Put the thing you have away before choosing another."; "isl: him if you can play with the thing he chose." The teacher did not suggest specific uses of mat ris ials, but encouraged children's discussion and participation chrough conversationally showing interest and approval. The children vere told initially that they would come to the roon each day to "learn to use their own good ideas."

Materials such as the folloring ware available on a ratating basis. At the beginning of the term only one or a few ware presented at any sussion. Later several, as many as nine, were simultenzously available.
(1) Finger painting: finger paint paper; smocks; rack; ctc.
(2) Crayon fieces, assortel eolors and sizes: Manila paper
(3) Easels; tempera paints; brushes; newsprint shects; racks; smocks; ctc.
(4) Rhythm band instruments - triangles, tone blocks, tom-toms, atc.; record player; records
(5) Wooden and plastic blocks, small assorted shapes
(6) Pasta; Manila paper; colorel construction ur metallic papurs cut i.lt: various shapes
(7) Felt pens; newsprint
(8) Small blocis of scrap wod, variously shaped; Elmer's gluz; tumpera paints
(9) Glitter cust; Elnaw's glue; hanila paper
(10) Chalk in various colors; colorei construction paper
(11) Minature town set
(12) Salt clay; rolling blocks, sticks
(13) Printing set of abstract forms; ink pad; newsprint
(14) Puzzles of various kinds
(15) Hand puppets
(16) Tinker Toys
(17) Construction toys etc.

Test Data for Each Subject on All Measures

Classroom：A
Session：AM

$\begin{aligned} & \text { 漞 } \\ & \hline \end{aligned}$	$\stackrel{\times}{\oplus}$			$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \text { 䔍 } \\ & \text { 苞 } \end{aligned}$			$\begin{aligned} & \text { 花 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ $\ddot{n} 0$			
72	F	83	83	38	4.2	2	6	38	15	23	＇8	11
66	E.	88	83	48	3.3	4	7	109	13	14	8	10
－ 68	F	93	97	39	5.3	3	10	240	14	14	10	14
咅 74	M		93	64	3.1	5	6	37	11	11	10	14
$\text { 䔍 } 67$	M	87	92	54	5.0	5	7	240	.21	11	10	12
69	M	91	87	45	3.5	4	7	97	11	23	9	10
65	F	60	85	45	2.4	1	5	31	14	14	7	11
75	F	77	70	61	5.2	6	8	Qi	11	14	5	6
68	M	81	86	46	4.1	0	1	49	6	7	10	14
± 75	F	113	117	56	5.5	6	8	240	7	13	12	17
\％ 71	M	81	100	40	2.9	4	7	143	16	22	9	13
哭 73	F	76	94	46	2.7	2	7	193	11	20	10	13
77	F	79	100	58	2.0	5	7	80	3	5	11	15
67	F	76	74	43	10.6	3	7	51	6	9	4	5
	M	85	74	37	3.9	2	7	54	10	11	8	9
号 76	F	77	93	45	2.8	5	6	71	14	29	5	5
65	F	96	103	49	4.3	5	7	145	14	21	10	16

Clasaroom：B
Session：AM

$\begin{aligned} & \text { y } \\ & \text { 宏 } \\ & \hline \end{aligned}$	$\stackrel{\text { * }}{0}$			$\begin{aligned} & 5 \\ & \stackrel{y}{\circ} \\ & \hline \end{aligned}$	岂	$$	$\begin{aligned} & \text { 思 } \\ & \text { H } \\ & \stackrel{y}{E} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ou H } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
66	M	98	102	54	2.8	2	9	96	15	19	7	9
70	F	62	7.0	27	4.6	5	10	34	3	3	8	11
770	F	71	100	44	2.9	5	8	240	21.	23	9	13
${ }_{\mathbf{8}}^{\mathbf{9}} 71$	M	72	82	45	3.1	5	7	74	18	25	10	14
苞68	F	80	＂89	46	9.7	3	7	70	9	10	11	15
78	F	98	100	46	3.4	5	6	101			7	8
67	M	80	79	52	3.7	4	10	87	21	24	7	6
72	F	100	86	51	3.9	5	8	66	18	24	10	12
71	M	79	89	44	2.5	3	8	145	11	15	8	12
矿73	M	80	88	54	3.8	2	7	78	16	22	7	11
$\text { 花 } 76$	F	63	78									
65	F	120	89	42	3.9	6	8	86	9	11	9	11
67	M	81	77	43	8.2	4	9	226	11	11	8	11
69	M	71	86	41	11.9	¢	7	37	14	21	7	7
71	F	90	91	40	4.5	4	－7	32	6	6	6	6
－74	F	105	121	54	5.0	7	9	142	11	21	11	14
	M	98	103.	59	2.6	4	7	240	8	10	11	13
69	\underline{F}	105	103	48	4.1	5	9	71	5	5	5	6
70	F	79	75	31	8.6	3	3	36	12	14	8	11

Classroom: C Session: AM

[^2]Classroom: A
Session: PM

| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Classroom：B Session：PM

曷	－	$\begin{array}{r} 1 \\ \substack{\text { en m } \\ \text { in } \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & \text { 䓵 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { + } \\ & \hline \end{aligned}$	$\begin{gathered} \text { g } \\ \stackrel{y}{0} \\ \text { an } \end{gathered}$	$\begin{aligned} & \text { 葛 } \\ & 0 \\ & \stackrel{0}{a} \\ & \hline \end{aligned}$					
73	M	85	85	47.	5.4	3	3	： 168	15	20	12	16
－ 69	F	93	96	55	7.5	9	10	123	14	20	12	2.5
硧 77	M	78	69	51	4.0	3	9	49	1	1	11	15
¢ 77	F	8：	86	45	5.6	6	9	240	15	24	12	16
70	M	85	70	45	3.7	7	9	240	8	12	12	18
76	F	100	87	48	3.7	6	8	240	22	34	10	13
${ }_{\substack{0 \\ \hline \\ \hline 1 \\ 0}}$	M		78	36	5.6	5	7	105			5	6
¢	M	78	80	50	4.9	7	10	198	20	25	11	16
猺 71	M	86	106	57	5.9	6	8	128	18	25	12	17
70	F	79	80	48	4.0	4	8	240	13	15	4	7
70	F	89	108.	67	9.1	10	10	240	7	7	12	18
73	M	86	90	54	5.3	4	6	209	10	10	9	10
${ }_{-1} 72$	M	83	85	59	7.9	8	10	97	4	5	12	15
\％ 74	M	88	91	49	5.9	7	10	240	18	21	11	16
－ 69	F	96	107	52	3.3	3	6	176	18	29	12	16
67	F	87	98	46	3.0	3	10	133	14	15	12	16

Classroom: C
Session: PM

*Successfully completed task

APPENDIX D

6470

MEANS ANI STAUDART DEVIATIONS FOR
CtiANGE IN SCORES FROM PRE-TESTING TO POST TESTING ON STANFORD-BINETS

Note: As noted in text the means for change presented in this table have been converted into positive numbers. On this scale the point of "no change" is at the numberal 32.

MEANS AND STANDARD DEVIATIONS FOR
SCORES OM PEABODY PICTURE VOCABULARY TEST

means and standard deviations for ATTENTION SCORES

MEANS AND STANDARD UEVIATIONG FOR
SCORES ON VISUAL. RETENTION TASKS

MEANS AND STANDARD DEVIATIONS FOR
SCORES ON VISUAL DISCRIMINATIONZ TASKS

MEANS AND STANDARD DEVIATIONS FOR
TASK PERSISTANCE SCORES

Classroom \& Session	Instsuctional Condition							
	Sequential		Expressive			Control		
	N	M SD	N	M	SD	N	M	SD
$\begin{gathered} 4 \\ 8 \\ 8 \\ \hline \end{gathered}$	$6 \quad 126.83 \quad 92.50$		7	118.00	77.13	4	80.25	44.06
$$	5	168.6073 .12	$6 \quad 106.00 \quad 48.74$			4	148.25111 .23	
$\begin{aligned} & \text { A.M. } \\ & \hline \\ & \hline \end{aligned}$	6	102.5071 .43		$5 \quad 92.40 \quad 30.58$		7	119.14	85.93
	5	164.0081 .35	$5 \quad 182.80 \quad 62.91$			6	182.50	58.51
若 A.M.	6	178.3379 .47	$6 \quad 109.83 \quad 53.34$				189.83	65.58
	5	161.2085 .56		136.66	84.93	5	202.80	83.18

-7民ー

MEANS AND STANDARD DEVIATIONS FOR

TOTAI SCORES FOR DIVERGENT USES TASKS

MEANS AND STANDARD DEVIATIONS FOR
WEIGHTED SCORES ON DIVERGENT USES TASKS

means and stardard deviations for
CLASSIFICATION TASKS SCORED FOR USE OF PRINCIPLES

Classroom \& Session	Instructional Condition								
	Sequential			Expressive			Control		
	N	M	SD	N	M	SD	N	M	SD
	$6 \quad 9.17 \quad .98$			$7 \quad 9.14$		2.41	4	6.75	2.75
	5	$5 \quad 9.003 .08$		$6 \quad 9.33$		1.97	5	$5 \quad 9.60$	3.05
$\begin{array}{ll} \hline \infty & \\ \mathrm{C}_{0} & \text { A.M. } \\ \hline \end{array}$	$8.67 \quad 1.63$		1.63	$\begin{array}{lll}5 & 8.20 & 1.30\end{array}$			7	8.00	2.31
	$5 \quad 11.80 \quad .44$			$58.40 \quad 3.65$			11.33		1.21
O	$6 \quad 9.83 \quad 1.83$			$5 \quad 7.83$		2.23	6	817	1.83
-	$5 \quad 9.80 \quad 3.34$			$6 \quad 9.67$		3.14		10.00	2.35

MRANS AND STANDARD DEVIATIONS FOR.
CLASSIFICATION TASKS SCORED FOR PATTERN

C1:388rcom \& Session	Instructional Condition								
	Sequential			Expressive			Control		
	N	M	SD	N	M	SD	N	M	SD
$\begin{array}{ll} \hline 4 & \\ 8 & \text { A.M. } \\ \hline \mathbf{H} \end{array}$	6	11.83	1.83	$7 \quad 12.71 \quad 3.50$			4	8.75	5.19
	5	12.00	4.95	6	13.00	2.68	5	13.20	5.26
\% A.M.	6	11.57	2.80		$5 \quad 10.40$	2.51	7	9.71	3.35
	5	16.00	1.22	$5 \quad 11.80$		5.07	6	15.17	2.71
$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	6	14.00	3.52	$6 \quad 10.33$		3.08	6	10.33	3.08
	5	13.20	4.89		613.00	3.85	5	13.40	3.65

[^0]: —Means underlined by the same line are not significantly different.

[^1]: 3 Three subjects successfully completer the most lifficult of the rectangle puzzles. Their scores were recordec at the highest nersistance level - 2.40 . although they finished in less than that time in each case.

[^2]: *Successfully completed task

